A direct method for solving an anisotropic mean curvature flow of plane curves with an external force

نویسنده

  • Karol Mikula
چکیده

A new method for solution of the evolution of plane curves satisfying the geometric equation v= (x; k; ), where v is the normal velocity, k and are the curvature and tangential angle of a plane curve ⊂R2 at the point x∈ , is proposed. We derive a governing system of partial di erential equations for the curvature, tangential angle, local length and position vector of an evolving family of plane curves and prove local in time existence of a classical solution. These equations include a non-trivial tangential velocity functional governing a uniform redistribution of grid points and thus preventing numerically computed solutions from forming various instabilities. We discretize the governing system of equations in order to nd a numerical solution for 2D anisotropic interface motions and image segmentation problems. Copyright ? 2004 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational and qualitative aspects of evolution of curves driven by curvature and external force

We propose a direct method for solving the evolution of plane curves satisfying the geometric equation v= β(x, k, ν) where v is the normal velocity, k and ν are the curvature and tangential angle of a plane curve Γ ⊂ R2 at a point x ∈ Γ . We derive and analyze the governing system of partial differential equations for the curvature, tangential angle, local length and position vector of an evolv...

متن کامل

Contour Parametrization via Anisotropic Mean Curvature Flows

We present a new implementation of anisotropic mean curvature flow for contour recognition. Our procedure couples the mean curvature flow of planar closed smooth curves, with an external field from a potential of point-wise charges. This coupling constrains the motion when the curve matches a picture placed as background. We include a stability criteria for our numerical approximation.

متن کامل

Inviscid Compressible Flow in Meridional Plane of an Axial Flow Compressor

In this paper it is attempted to investigate the behavior of an inviscid flow in the meridional plane of an axial flow compressor. For this purpose the 3-D unsteady Euler equations in cylindrical coordinate are averaged in tangential direction. Therefore, the equations are reduced to a 2-D system. By averaging the tangential component of momentum equation, a blade force will result. Axial and r...

متن کامل

Inviscid Compressible Flow in Meridional Plane of an Axial Flow Compressor

In this paper it is attempted to investigate the behavior of an inviscid flow in the meridional plane of an axial flow compressor. For this purpose the 3-D unsteady Euler equations in cylindrical coordinate are averaged in tangential direction. Therefore, the equations are reduced to a 2-D system. By averaging the tangential component of momentum equation, a blade force will result. Axial and r...

متن کامل

A Simple, Fast and Stable Flowing Finite Volume Method for Solving General Curve Evolution Equations

A new simple Lagrangean method with favorable stability and efficiency properties for computing a general plane curve evolutions is presented. The method is based on the flowing finite volume discretization of the intrinsic partial differential equation for updating the position vector of evolving family of plane curves. A curve can be evolved in the normal direction by a combination of fourth ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004